Analysis of cell cycle and replication of mouse macrophages after in vivo and in vitro Cryptococcus neoformans infection using laser scanning cytometry.
نویسندگان
چکیده
We investigated the outcome of the interaction of Cryptococcus neoformans with murine macrophages using laser scanning cytometry (LSC). Previous results in our lab had shown that phagocytosis of C. neoformans promoted cell cycle progression. LSC allowed us to simultaneously measure the phagocytic index, macrophage DNA content, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation such that it was possible to study host cell division as a function of phagocytosis. LSC proved to be a robust, reliable, and high-throughput method for quantifying phagocytosis. Phagocytosis of C. neoformans promoted cell cycle progression, but infected macrophages were significantly less likely to complete mitosis. Hence, we report a new cytotoxic effect associated with intracellular C. neoformans residence that manifested itself in impaired cell cycle completion as a consequence of a block in the G(2)/M stage of the mitotic cell cycle. Cell cycle arrest was not due to increased cell membrane permeability or DNA damage. We investigated alveolar macrophage replication in vivo and demonstrated that these cells are capable of low levels of cell division in the presence or absence of C. neoformans infection. In summary, we simultaneously studied phagocytosis, the cell cycle state of the host cell and pathogen-mediated cytotoxicity, and our results demonstrate a new cytotoxic effect of C. neoformans infection on murine macrophages: fungus-induced cell cycle arrest. Finally, we provide evidence for alveolar macrophage proliferation in vivo.
منابع مشابه
Nonlytic Exocytosis of Cryptococcus neoformans from Macrophages Occurs In Vivo and Is Influenced by Phagosomal pH
UNLABELLED A unique aspect of the interaction of the fungus Cryptococcus neoformans with macrophages is the phenomenon of nonlytic exocytosis, also referred to as "vomocytosis" or phagosome extrusion/expulsion, which involves the escape of fungal cells from the phagocyte with the survival of both cell types. This phenomenon has been observed only in vitro using subjective and time-consuming mic...
متن کاملIn vivo role of dendritic cells in a murine model of pulmonary cryptococcosis.
Dendritic cells (DC) have been shown to phagocytose and kill Cryptococcus neoformans in vitro and are believed to be important for inducing protective immunity against this organism. Exposure to C. neoformans occurs mainly by inhalation, and in this study we examined the in vivo interactions of C. neoformans with DC in the lung. Fluorescently labeled live C. neoformans and heat-killed C. neofor...
متن کاملCryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection.
To produce chronic infection, microbial pathogens must escape host immune defenses. Infection with the human pathogenic fungus Cryptococcus neoformans is typically chronic. To understand the mechanism by which C. neoformans survives in tissue after the infection of immunocompetent hosts, we systematically studied the course of pulmonary infection in mice by electron microscopy. The macrophage w...
متن کاملCorrection: Macrophage Mitochondrial and Stress Response to Ingestion of Cryptococcus neoformans.
Human infection with Cryptococcus neoformans, a common fungal pathogen, follows deposition of yeast spores in the lung alveoli. The subsequent host-pathogen interaction can result in eradication, latency, or extrapulmonary dissemination. Successful control of C. neoformans infection is dependent on host macrophages, but macrophages display little ability to kill C. neoformans in vitro. Recently...
متن کاملFc- and complement-receptor activation stimulates cell cycle progression of macrophage cells from G1 to S.
Phagocytosis of microorganisms by macrophages is an important host defense mechanism. While studying the phagocytosis of the human pathogenic fungus Cryptococcus neoformans, we noted that macrophage-like J774 cells with ingested fungal cells had frequent mitotic figures. By analyzing the relative proportion of phagocytic cells as a function of cell cycle phase, we observed an increase in S phas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 80 4 شماره
صفحات -
تاریخ انتشار 2012